Wednesday 24 May 2017

Differenz Zwischen Moving Average Und Autoregressive Modell

Ein RIMA steht für Autoregressive Integrated Moving Average Modelle. Univariate (Einzelvektor) ARIMA ist eine Prognosemethode, die die zukünftigen Werte einer Serie, die vollständig auf ihrer eigenen Trägheit basiert, projiziert. Seine Hauptanwendung liegt im Bereich der kurzfristigen Prognose mit mindestens 40 historischen Datenpunkten. Es funktioniert am besten, wenn Ihre Daten eine stabile oder konsistente Muster im Laufe der Zeit mit einem Minimum an Ausreißern zeigt. Manchmal nennt man Box-Jenkins (nach den ursprünglichen Autoren), ARIMA ist in der Regel überlegen exponentielle Glättung Techniken, wenn die Daten relativ lange und die Korrelation zwischen vergangenen Beobachtungen ist stabil. Wenn die Daten kurz oder stark flüchtig sind, kann eine gewisse Glättungsmethode besser ablaufen. Wenn Sie nicht über mindestens 38 Datenpunkte verfügen, sollten Sie eine andere Methode als ARIMA betrachten. Der erste Schritt bei der Anwendung der ARIMA-Methodik ist die Überprüfung der Stationarität. Stationarität impliziert, dass die Reihe auf einem ziemlich konstanten Niveau über Zeit bleibt. Wenn ein Trend besteht, wie in den meisten wirtschaftlichen oder geschäftlichen Anwendungen, dann sind Ihre Daten nicht stationär. Die Daten sollten auch eine konstante Varianz in ihren Schwankungen im Laufe der Zeit zeigen. Dies ist leicht zu sehen mit einer Serie, die stark saisonal und wächst mit einer schnelleren Rate. In einem solchen Fall werden die Höhen und Tiefen der Saisonalität im Laufe der Zeit dramatischer. Ohne dass diese Stationaritätsbedingungen erfüllt sind, können viele der mit dem Prozess verbundenen Berechnungen nicht berechnet werden. Wenn eine grafische Darstellung der Daten Nichtstationarität anzeigt, dann sollten Sie die Serie unterscheiden. Die Differenzierung ist eine hervorragende Möglichkeit, eine nichtstationäre Serie in eine stationäre zu transformieren. Dies geschieht durch Subtrahieren der Beobachtung in der aktuellen Periode von der vorherigen. Wenn diese Transformation nur einmal zu einer Reihe erfolgt, sagen Sie, dass die Daten zuerst unterschieden wurden. Dieser Prozess im Wesentlichen eliminiert den Trend, wenn Ihre Serie wächst mit einer ziemlich konstanten Rate. Wenn es mit steigender Rate wächst, können Sie die gleiche Prozedur anwenden und die Daten erneut differenzieren. Ihre Daten würden dann zweite differenziert werden. Autokorrelationen sind Zahlenwerte, die angeben, wie sich eine Datenreihe mit der Zeit auf sich bezieht. Genauer gesagt misst es, wie stark Datenwerte bei einer bestimmten Anzahl von Perioden auseinander über die Zeit miteinander korreliert werden. Die Anzahl der Perioden wird in der Regel als Verzögerung bezeichnet. Zum Beispiel misst eine Autokorrelation bei Verzögerung 1, wie die Werte 1 Periode auseinander in der Reihe miteinander korreliert sind. Eine Autokorrelation bei Verzögerung 2 misst, wie die Daten, die zwei Perioden voneinander getrennt sind, über die gesamte Reihe miteinander korrelieren. Autokorrelationen können im Bereich von 1 bis -1 liegen. Ein Wert nahe 1 gibt eine hohe positive Korrelation an, während ein Wert nahe -1 impliziert eine hohe negative Korrelation. Diese Maßnahmen werden meist durch grafische Darstellungen, sogenannte Korrelagramme, ausgewertet. Ein Korrelationsdiagramm zeigt die Autokorrelationswerte für eine gegebene Reihe bei unterschiedlichen Verzögerungen. Dies wird als Autokorrelationsfunktion bezeichnet und ist bei der ARIMA-Methode sehr wichtig. Die ARIMA-Methodik versucht, die Bewegungen in einer stationären Zeitreihe als Funktion von autoregressiven und gleitenden Durchschnittsparametern zu beschreiben. Diese werden als AR-Parameter (autoregessiv) und MA-Parameter (gleitende Mittelwerte) bezeichnet. Ein AR-Modell mit nur einem Parameter kann als geschrieben werden. X (t) A (1) X (t-1) E (t) wobei X (t) Zeitreihen A (1) der autoregressive Parameter der Ordnung 1 X (t-1) (T) der Fehlerterm des Modells Dies bedeutet einfach, dass jeder gegebene Wert X (t) durch eine Funktion seines vorherigen Wertes X (t-1) plus einen unerklärlichen Zufallsfehler E (t) erklärt werden kann. Wenn der geschätzte Wert von A (1) 0,30 betrug, dann wäre der aktuelle Wert der Reihe mit 30 seines vorherigen Wertes 1 verknüpft. Natürlich könnte die Serie auf mehr als nur einen vergangenen Wert bezogen werden. Zum Beispiel ist X (t) A (1) X (t-1) A (2) X (t-2) E (t) Dies zeigt an, dass der aktuelle Wert der Reihe eine Kombination der beiden unmittelbar vorhergehenden Werte ist, X (t-1) und X (t-2) zuzüglich eines Zufallsfehlers E (t). Unser Modell ist nun ein autoregressives Modell der Ordnung 2. Moving Average Models: Eine zweite Art von Box-Jenkins-Modell wird als gleitendes Durchschnittsmodell bezeichnet. Obwohl diese Modelle dem AR-Modell sehr ähnlich sind, ist das Konzept hinter ihnen ganz anders. Bewegliche Durchschnittsparameter beziehen sich auf das, was in der Periode t stattfindet, nur auf die zufälligen Fehler, die in vergangenen Zeitperioden aufgetreten sind, dh E (t-1), E (t-2) usw. anstatt auf X (t-1), X T-2), (Xt-3) wie in den autoregressiven Ansätzen. Ein gleitendes Durchschnittsmodell mit einem MA-Begriff kann wie folgt geschrieben werden. X (t) - B (1) E (t-1) E (t) Der Begriff B (1) wird als MA der Ordnung 1 bezeichnet. Das negative Vorzeichen vor dem Parameter wird nur für Konventionen verwendet und in der Regel ausgedruckt Automatisch von den meisten Computerprogrammen. Das obige Modell sagt einfach, dass jeder gegebene Wert von X (t) direkt nur mit dem Zufallsfehler in der vorherigen Periode E (t-1) und mit dem aktuellen Fehlerterm E (t) zusammenhängt. Wie im Fall von autoregressiven Modellen können die gleitenden Durchschnittsmodelle auf übergeordnete Strukturen mit unterschiedlichen Kombinationen und gleitenden mittleren Längen erweitert werden. Die ARIMA-Methodik erlaubt es auch, Modelle zu erstellen, die sowohl autoregressive als auch gleitende Durchschnittsparameter zusammenführen. Diese Modelle werden oft als gemischte Modelle bezeichnet. Obwohl dies für eine kompliziertere Prognose-Tool macht, kann die Struktur tatsächlich simulieren die Serie besser und produzieren eine genauere Prognose. Pure Modelle implizieren, dass die Struktur nur aus AR oder MA-Parameter besteht - nicht beides. Die Modelle, die von diesem Ansatz entwickelt werden, werden in der Regel als ARIMA-Modelle bezeichnet, da sie eine Kombination aus autoregressiver (AR), Integration (I) verwenden, die sich auf den umgekehrten Prozess der Differenzierung bezieht, um die Prognose zu erzeugen. Ein ARIMA-Modell wird üblicherweise als ARIMA (p, d, q) angegeben. Dies ist die Reihenfolge der autoregressiven Komponenten (p), der Anzahl der differenzierenden Operatoren (d) und der höchsten Ordnung des gleitenden Mittelwerts. Beispielsweise bedeutet ARIMA (2,1,1), dass Sie ein autoregressives Modell zweiter Ordnung mit einer ersten gleitenden Durchschnittskomponente haben, deren Serie einmal differenziert wurde, um die Stationarität zu induzieren. Auswahl der richtigen Spezifikation: Das Hauptproblem in der klassischen Box-Jenkins versucht zu entscheiden, welche ARIMA-Spezifikation zu verwenden - i. e. Wie viele AR - und / oder MA-Parameter eingeschlossen werden sollen. Dies ist, was viel von Box-Jenkings 1976 dem Identifikationsprozeß gewidmet wurde. Es hing von der graphischen und numerischen Auswertung der Stichprobenautokorrelation und der partiellen Autokorrelationsfunktionen ab. Nun, für Ihre grundlegenden Modelle, ist die Aufgabe nicht allzu schwierig. Jeder hat Autokorrelationsfunktionen, die eine bestimmte Weise aussehen. Allerdings, wenn Sie gehen in der Komplexität, die Muster sind nicht so leicht zu erkennen. Um es schwieriger zu machen, stellen Ihre Daten nur eine Probe des zugrundeliegenden Prozesses dar. Das bedeutet, dass Stichprobenfehler (Ausreißer, Messfehler etc.) den theoretischen Identifikationsprozess verzerren können. Deshalb ist die traditionelle ARIMA-Modellierung eher eine Kunst als eine Wissenschaft. Es gibt eine Reihe von Ansätzen zur Modellierung von Zeitreihen. Wir skizzieren einige der häufigsten Ansätze unten. Trend, saisonal, Restzersetzungen Ein Ansatz ist es, die Zeitreihen in einen Trend-, Saison - und Restbestandteil zu zerlegen. Eine dreifache Exponentialglättung ist ein Beispiel für diesen Ansatz. Ein anderes Beispiel, das saisonale Löß genannt wird, basiert auf lokal gewichteten kleinsten Quadraten und wird von Cleveland (1993) diskutiert. Wir behandeln nicht saisonale Löss in diesem Handbuch. Frequenzbasierte Methoden Ein weiterer Ansatz, der in der wissenschaftlichen und technischen Anwendung häufig verwendet wird, besteht darin, die Serie im Frequenzbereich zu analysieren. Ein Beispiel für diesen Ansatz bei der Modellierung eines sinusförmigen Datensatzes wird in der Strahlablenkungsfallstudie gezeigt. Das Spektraldiagramm ist das Hauptinstrument für die Frequenzanalyse von Zeitreihen. Autoregressive (AR) Modelle Ein allgemeiner Ansatz für die Modellierung univariater Zeitreihen ist das autoregressive (AR) Modell: Xt delta phi1 X phi2 X cdots phip X At, wobei (Xt) die Zeitreihe, (At) das weiße Rauschen und delta ist Links (1 - sum p phii rechts) mu. Mit (mu) das Prozeßmittel. Ein autoregressives Modell ist einfach eine lineare Regression des aktuellen Wertes der Serie gegen einen oder mehrere vorherige Werte der Serie. Der Wert von (p) wird als Ordnung des AR-Modells bezeichnet. AR-Modelle können mit einer von verschiedenen Methoden analysiert werden, einschließlich Standard-linearen Methoden der kleinsten Quadrate. Sie haben auch eine einfache Interpretation. Moving Average (MA) Modelle Ein weiteres gemeinsames Konzept für die Modellierung von univariaten Zeitreihenmodellen ist das gleitende Durchschnittsmodell (MA): Xt mu At - theta1 A - theta2 A - cdots - thetaq A, wobei (Xt) die Zeitreihe (mu ) Ist der Mittelwert der Reihe, (A) sind weiße Rauschterme, und (theta1,, ldots,, thetaq) sind die Parameter des Modells. Der Wert von (q) wird als Ordnung des MA-Modells bezeichnet. Das heißt, ein gleitendes Durchschnittsmodell ist konzeptionell eine lineare Regression des aktuellen Wertes der Reihe gegen das weiße Rauschen oder zufällige Schocks eines oder mehrerer früherer Werte der Reihe. Es wird angenommen, daß die zufälligen Schocks an jedem Punkt von der gleichen Verteilung, typischerweise einer Normalverteilung, mit einer Stelle bei Null und einer konstanten Skala kommen. Die Unterscheidung in diesem Modell ist, dass diese zufälligen Schocks propagiert werden, um zukünftige Werte der Zeitreihe. Das Anpassen der MA-Schätzungen ist komplizierter als bei AR-Modellen, da die Fehlerterme nicht beobachtbar sind. Dies bedeutet, dass iterative nicht-lineare Anpassungsverfahren anstelle von linearen kleinsten Quadraten verwendet werden müssen. MA-Modelle haben auch eine weniger offensichtliche Interpretation als AR-Modelle. Manchmal schlagen die ACF und PACF vor, dass ein MA-Modell eine bessere Modellwahl wäre und manchmal beide AR - und MA-Begriffe in demselben Modell verwendet werden sollten (siehe Abschnitt 6.4.4.5). Beachten Sie jedoch, dass die Fehlerterme nach dem Modell unabhängig sein sollten und den Standardannahmen für einen univariaten Prozess folgen. Box und Jenkins einen Ansatz, der den gleitenden Durchschnitt und die autoregressiven Ansätze in dem Buch Zeitreihenanalyse: Prognose und Kontrolle kombiniert (Box, Jenkins und Reinsel, 1994). Obwohl sowohl autoregressive als auch gleitende Durchschnittsansätze bereits bekannt waren (und ursprünglich von Yule untersucht wurden) bestand der Beitrag von Box und Jenkins darin, eine systematische Methodik zur Identifizierung und Schätzung von Modellen zu entwickeln, die beide Ansätze berücksichtigen könnten. Dies macht Box-Jenkins Modelle eine leistungsfähige Klasse von Modellen. Die nächsten Abschnitte behandeln diese Modelle im Detail.


No comments:

Post a Comment